Long-term Outcomes of PCI versus CABG in Patients with Multi-vessel CAD:

Observations from CREDO-Kyoto PCI/CABG Registry

Takeshi Kimura M.D.

Department of Cardiovascular Medicine

Kyoto University Graduate School of Medicine

Meta-analysis of RCTs comparing PCI versus CABG in Multivessel CAD: BMS/DES Era

Mortality

	Statistics for Each Study				Death	/Total				
Source	RR (95% CI)		Z Value	P Value	CABG	PCI	Favors CABG		Favors PCI	
ARTS ^{10,11}	0.97	(0.66-1.43)	-0.16	.87	46/584	48/590				
MASS II ⁶	0.67	(0.37-1.23)	-1.29	.20	16/203	24/205	←			
SoS ^{2,15}	0.63	(0.41-0.95)	-2.23	.03	34/500	53/488	←	-		
CARDia ⁷	1.02	(0.39-2.69)	0.05	.96	8/242	8/248	←			
SYNTAX multivessel ^{9,12}	0.60	(0.39-0.92)	-2.36	.02	31/547	52/548	←			
FREEDOM ¹⁶	0.73	(0.56-0.95)	-2.31	.02	86/947	118/953	-			
Meta-analysis	0.73	(0.62-0.86)	-3.69	<.001	221/3023	303/3032		\diamondsuit	 	
							0.5		¦ .0 5% CI)	2.

Previous randomized trials in the DES era reported survival benefit with CABG over PCI.

Sipahi I, et al. JAMA Intern Med. 2014.

Thoughts on the RCTs and Registries Comparing PCI/CABG

Gold standard

•RCT might be the gold standard to compare the clinical outcomes after PCI and CABG.

Importance of technical expertise

•However, the findings from RCTs may not be universally applicable when evaluating the interventions such as PCI and CABG, in which technical expertise is playing the integral role.

External validity

•Furthermore, external validity of the findings from RCTs might be severely hampered by their exclusion criteria; The conclusions from RCTs could not be applicable to those elderly patients with serious co-morbidities, who are often excluded from RCTs, but often encountered in the real clinical practice, particularly in Japan.

Thoughts on the RCTs and Registries Comparing PCI/CABG

Geographic and ethnic differences

•The clinical relevance of the possible difference between PCI and CABG for ischemic protection might depend on the absolute rates of ischemic events and relative distributions of cardiac/non-cardiac mortality, that could be varied according to the geography and ethnicity.

Feasibility of RCTs

•RCTs comparing PCI with CABG are not feasible in Japan, where PCI is commonly performed in patients with complex left main and/or triple vessel coronary artery disease in daily clinical practice.

Role of registries

•What we should do in this Japanese situation is to demonstrate that the long-term mortality after PCI is not so much different from that after CABG in meticulously conducted observational studies.

CREDO-KYOTO PCI / CABG Registry

(Coronary REvascularization Demonstrating Outcome Study in Kyoto)

Multicenter registry enrolling consecutive patients with first coronary revascularization

Cohort 1: 2000-2002 BMS Era (N=9877, 30 centers, 10-year FU completed)

Excluding patients presenting with acute myocardial infarction

Isolated Coronary Revascularization	9393 patients
PCI	6878 patients
Stent Use	82%
Isolated CABG	2515 patients
IMA Use	94 %

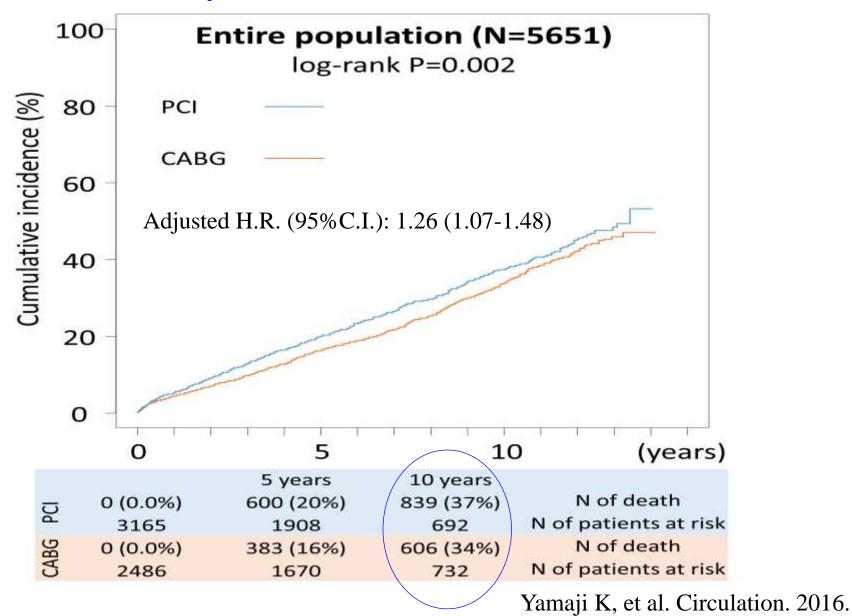
Cohort 2: 2005-2007 G-1 DES Era (N=15939, 26 centers, 5-year FU completed)

Including presenting with acute myocardial infarction

Isolated Coronary Revascularization	15331 patients
PCI	13058 patients
Stent Use	93%
DES Use	53%
Isolated CABG	2173 patients
IMA Use	97 %

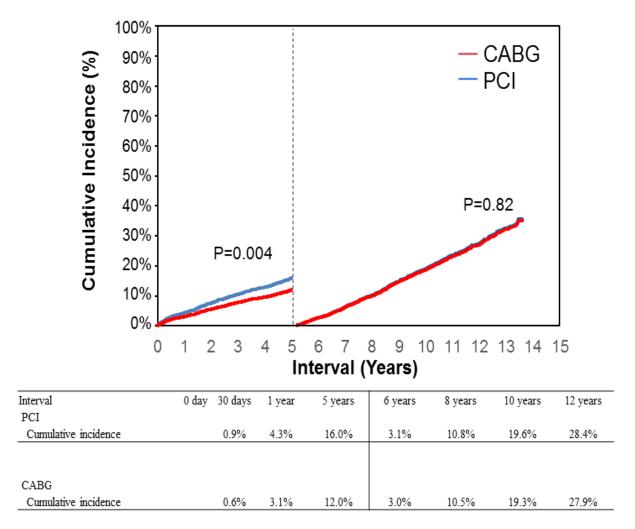
Cohort 3: 2011-2013 G-2 DES Era (Now collecting data)

Pooled Analysis of CREDO-Kyoto Cohort-1 and -2


PCI versus CABG in Triple Vessel CAD

Baseline Characteristics	PCI	CABG	P value	
	(N=3165)	(N=2486)		
Age, years	69.4 ± 10.0	67.5 ± 9.00	< 0.001	
Male	70%	72%	0.054	
Diabetes mellitus				
Not on insulin therapy	36%	36%	0.96	
On insulin therapy	13%	17%	< 0.001	
Previous MI	23%	32%	< 0.001	
eGER <30, not on HD	5%	7%	0.02	
Dialysis	156(4.9)	143(5.8)	0.19	
Malignancy	10%	8%	0.007	
Anemia	15%	19%	< 0.001	
Proximal LAD disease	86%	96%	< 0.001	
Chronic total occlusion	41%	56%	< 0.001	
SYNTAX score	23.2 ± 9.68	26.5 ± 13.8	< 0.001	

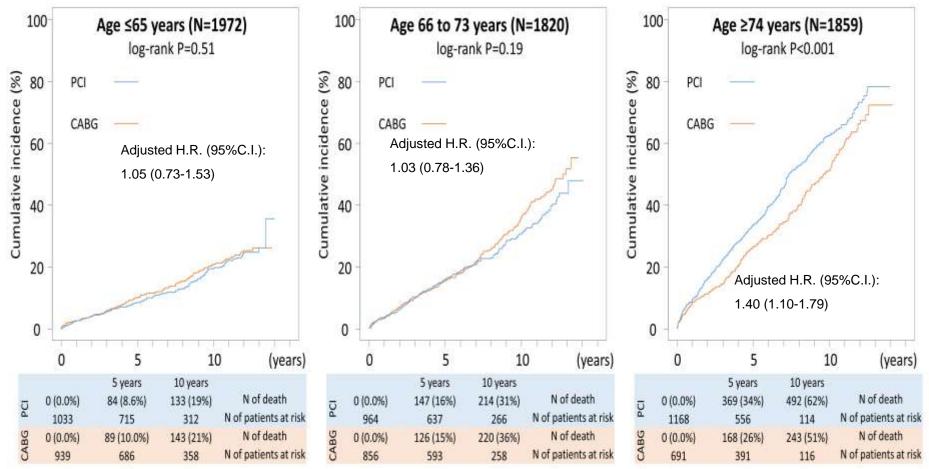
Yamaji K, et al. Circulation. 2016.


Pooled Analysis of CREDO-Kyoto Cohort-1 and -2

Mortality risk of PCI relative to CABG in TVD

CREDO-Kyoto Cohort-1 Extended 10- to 14-Year FU PCI versus CABG for MVD excluding LMCA disease

Adjusted risk for death: Within 5-year and Beyond 5-Year

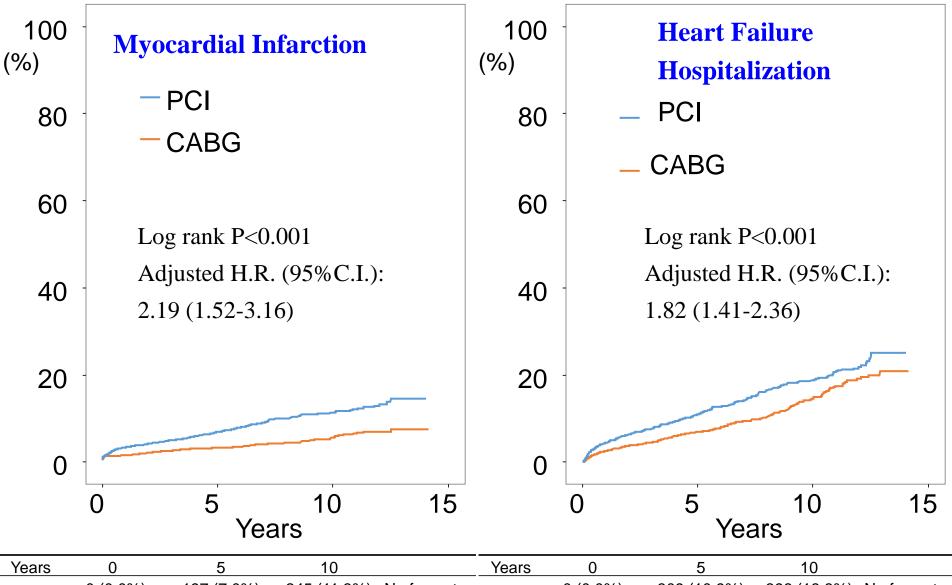


Shiomi H, et al. Circulation Cardiovasc Interv. 2016.

Pooled Analysis of CREDO-Kyoto Cohort-1 and -2

Mortality risk of PCI relative to CABG in TVD

According to Age Categories



The excess mortality risk of PCI relative to CABG was seen in patients aged >=74 years, while the risk was neutral in patients aged <74 years. This result might be due to more complex disease or selection bias in ultra-elderly patients.

Anyway, selection of PCI in relatively young 3VD patients might be appropriate.

Yamaji K, et al. Circulation. 2016.

Pooled Analysis of CREDO-Kyoto Cohort-1 and -2

rears	0	5	10		rears	0	5	10	
PCI	0 (0.0%)	197 (7.0%)	245 (11.3%)	N of events	PCI	0 (0.0%)	309 (10.9%)	398 (18.8%)	N of events
PCI	3165	1808	638	N at risk	PCI	3165	1780	642	N at risk
	0 (0.0%)	76 (3.3%)	98 (5.6%)	N of events		0 (0.0%)	154 (6.9%)	230 (14.5%)	N of events
CABG	2486	1635	706	N at risk	CABG	2486	1587	676	N at risk

Pooled Analysis of CREDO-Kyoto Cohort-1 and -2

N at risk

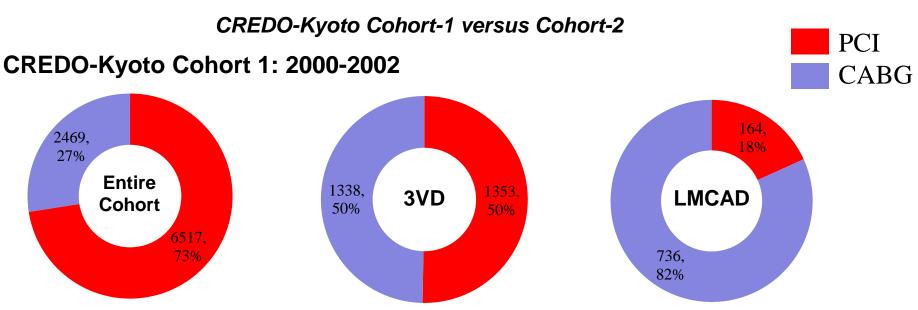
	i obieu militarysis of enclose myoto conort i ana 2										
100 (%)	-	Stroke)		100 (%)	-	Coro Revascul	onary Iarizatio	n		
80	1	PCI CABG			80	-	PCI CABG				
60	Log	g rank P=0.0)6		60	-					
40	Adj	usted H.R. 5 (0.57-0.98	(95%C.I.):		40		Log rank Adjusted	P<0.001 H.R. (95%	C.I.):		
20	-				20		4.40 (3.67	7-5.26)			
0					0						
	0	5 Yea	10 ars	15		0 5 10 15 Years					
Years	0	5	10		Years	0	5	10			
PCI	0 (0.0%) 3165	223 (8.0%) 1811	280 (13.1%) 640	N of events N at risk	PCI	0 (0.0%) 3165	1541 (52.1%) 871	198	N at risk		
CABG	0 (0.0%) 2486	201 (8.8%) 1573	275 (15.8%) 673	N of events N at risk	CABG	0 (0.0%) 2486	303 (13.2%) 1445	363 (19.2%) 593	N of events N at risk		

N at risk

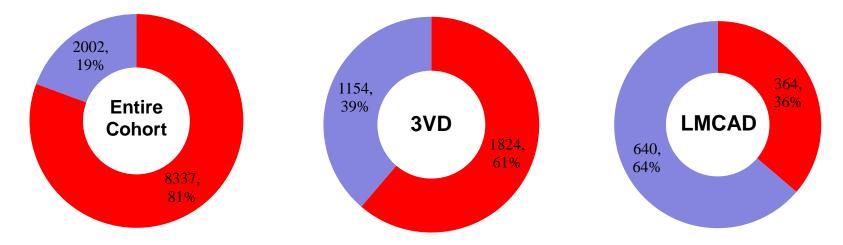
CREDO-Kyoto Registry Cohort-2: 3VD

Patients ineligible for CABG

Documentation in the chart as "ineligible for CABG" was found In 93 (**5.4%**) out of 1824 PCI patients

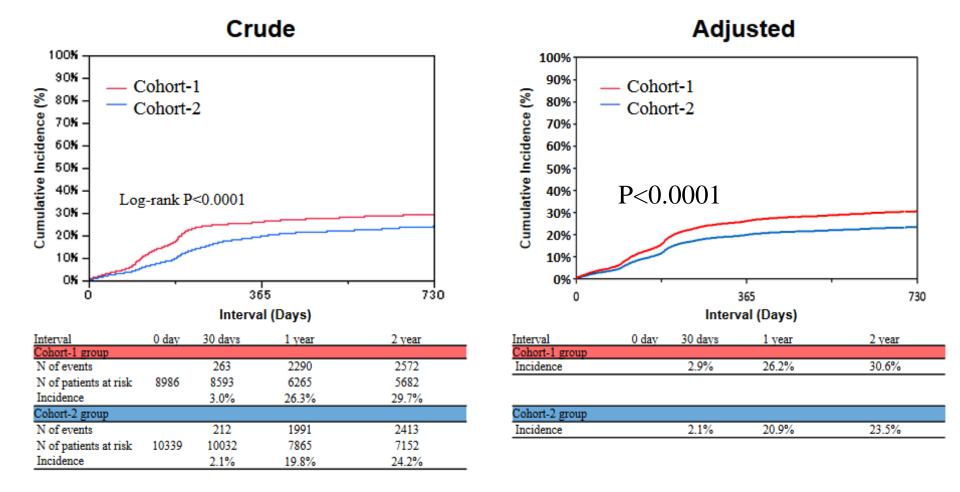

PCI Patients: Eligible versus Ineligible for CABG

Others **All-cause Death** No conduit 1(1%) 5(5%) 100% Cumulative Incidence (%) Ineligible N=93 90**%** -Difficult anatomies 80% -Eligible N=1731 7(8%) 70**%** -Super-elder 60**%** -32(34%) Log-rank P<0.0001 50% -40% 30**%** -Comorbidities 20% 10% 48(52%) 0% 730 365 1095 1460 1825 n Interval (Days)

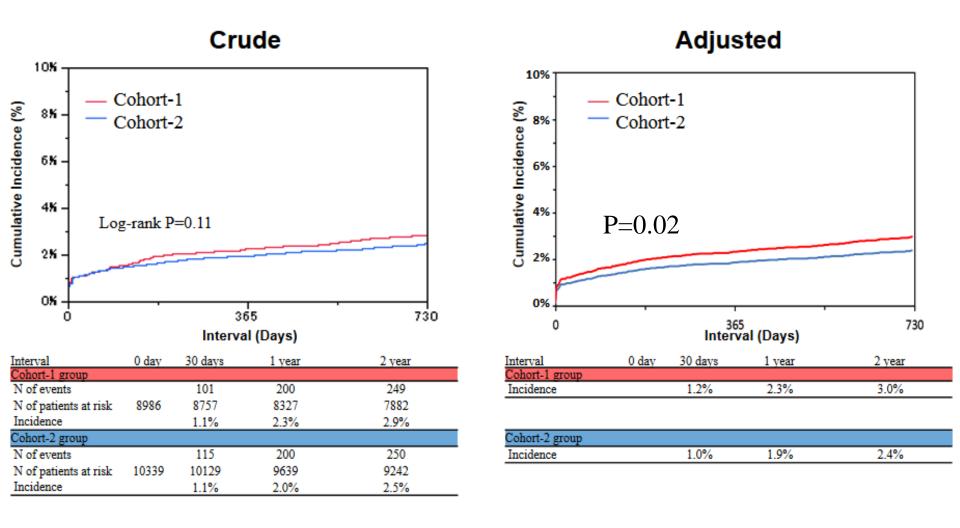

The prevalence of 5.4% patients ineligible for CABG seems to be too low in my own clinical experience.

Future registry comparing PCI with CABG should have a design feature, prospectively excluding those patients ineligible for CABG.

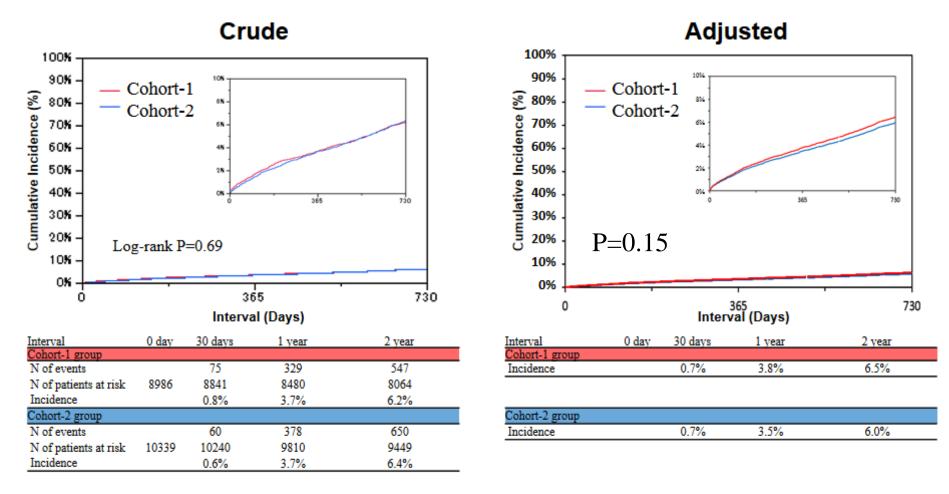
Changes in Coronary Revascularization Strategies



CREDO-Kyoto Cohort 2: 2005-2007


Changes in Clinical Outcomes Between Cohort-1 and -2

Repeated coronary revascularization


Changes in Clinical Outcomes Between Cohort-1 and -2

Myocardial infarction

Changes in Clinical Outcomes Between Cohort-1 and -2

All-cause death

Despite more prevalent choice of PCI in LMCA/TVD patients, mortality trended to be lower in the cohort-2 than in the cohort-1, suggesting that we are moving in the right direction.

Long-term Outcomes of PCI versus CABG in Patients with Multi-vessel CAD:

Observations from CREDO-Kyoto PCI/CABG Registry

Conclusions

 Current complex PCI outcomes based on the CREDO-Kyoto registries are reasonably good and almost comparable to CABG outcomes in Japan, where the majority of patients with triple vessel CAD are revascularized with PCI.

•We should continue to pursue the ultimate goal of complex PCI to provide less invasive treatment option alternative to CABG in many of the patients with advanced CAD by verifying the comparable long-term mortality in the timely conducted observational studies.